Abstract

The evolution of an optical pulse in a strongly dispersion-managed fiber-optic communication system is studied. The pulse is decomposed into a fast phase and a slowly evolving amplitude. The fast phase is calculated exactly, and a nonlocal equation for the evolution of the amplitude is derived. In the limit of weak dispersion management the equation reduces to the nonlinear Schrödinger equation. A class of stationary solutions of this equation is obtained; they represent pulses with a Gaussian-like core and exponentially decaying oscillatory tails, and they agree with direct numerical solutions of the full system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.