Abstract
Several electronic and optoelectronic devices have been proposed in recent years based on vertical heterostructures of two-dimensional (2D) materials. The large number of combinations of available 2D materials and the even larger number of possible heterostructures require effective and predictive device-simulation methods, to inform and accelerate experimental research and to support the interpretation of experiments. Here, we propose a computationally effective and physically sound method to model electron transport in 2D van der Waals heterostructures, based on a multiscale approach and quasiatomistic Hamiltonians. The method uses ab initio simulations to extract the parameters of a simplified tight-binding Hamiltonian based on a uniform three-dimensional lattice geometry that enables device simulations using the nonequilibrium Green's function approach in a computationally effective way. We describe the application and limitations of the method and discuss the examples of two use cases of practical electronic devices based on 2D materials, such as a field-effect transistor and a floating-gate memory, composed of molybdenum disulphide, hexagonal boron nitride and graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.