Abstract

An approach is developed for deriving variational methods capable of representing multiscale phenomena. The ideas are first illustrated on the exterior problem for the Helmholtz equation. This leads to the well-known Dirichlet-to-Neumann formulation. Next, a class of subgrid scale models is developed and the relationships to ‘bubble function’ methods and stabilized methods are established. It is shown that both the latter methods are approximate subgrid scale models. The identification for stabilized methods leads to an analytical formula for τ, the ‘intrinsic time scale’, whose origins have been a mystery heretofore.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.