Abstract

1. Habitat loss and fragmentation are major factors affecting vertebrate populations. A major effect of these habitat alterations is that they reduce movement of organisms. Despite the accepted importance of movement in driving the dynamics of many natural populations, movement of vertebrates in fragmented landscapes have seldom been estimated with robust statistical methods. 2. We estimated movement probabilities of snail kites Rosthramus sociabilis within the remaining wetlands in Florida. Using both radio-telemetry and banding information, we used a multistate modelling approach to estimate transition probabilities at two temporal scales (month; year) and multiple spatial scales. We examined kite movement among wetlands altered by three different levels of fragmentation: among wetlands separated by small physical barriers (e.g. road); among wetlands separated by moderate amount of matrix (< 5 km); and among wetlands separated by extensive matrix areas (> 15 km). 3. Kites moved extensively among contiguous wetlands (movement probability 0.29 per month), but significantly less among isolated wetlands (movement probability 0.10 per month). 4. Kites showed high levels of annual site fidelity to most isolated wetlands (probability ranged from 0.72 to 0.95 per year). 5. We tested the effects of patch size and interpatch distance on movement. Our modelling indicated an effect of both distance and patch size on juveniles' movement (but not adult) when examining movements among fragments. 6. Only a small proportion of kites escaped a regional drought by moving to refugia (wetlands less affected by drought). Many individuals died after the drought. During drought adult survival dropped by 16% while juvenile survival dropped by 86% (possibly because juveniles were less likely to reach refugia). 7. We hypothesize that fragmentation may decrease kite's resistance to drought by restricting exploratory behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.