Abstract

During the downslope long-distance movement of debris avalanches, particles interact with each other in various modes, by rolling, sliding and colliding with each other. During transport, grains may undergo breakage, changing in size and shape. However, research on debris avalanches at the grain scale remains limited, in particular, the evolution of grain morphology at different scales, from the overall form down to surface roughness, with runout distance. This paper investigates the evolution of particle morphology of granite gravel particles during long distance travel using a rotating drum, Micro-Deval apparatus, together with three-dimensional (3D) image analysis with a 3D laser scanner. The effects of particle shape and pore fluid (dry, saturated with water or slurry) on the evolution of particle morphology during transport were investigated. It was found that while the gravel was strong enough to resist the fragmentation that could be induced by the inter-particle actions during testing, the corners and edges became rounded, and the general form and surface roughness remained unaffected by the particle interactions. The more angular the grains, the easier the corners to be abraded during interaction. The change of local roundness of the grains was amplified in water-saturated conditions and suppressed in a slurry-saturated medium. The viscosity of the pore fluid, rather than initial particle shape, was critical in controlling the particle morphology evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.