Abstract

This study investigated the multiscale organization of tropical convection on an aquaplanet in a model experiment with a horizontal mesh size of 3.5 km (for a 10-day simulation) and 7 km (for a 40-day simulation). The numerical experiment used the nonhydrostatic icosahedral atmospheric model (NICAM) with explicit cloud physics. The simulation realistically reproduced multiscale cloud systems: eastward-propagating super cloud clusters (SCCs) contained westward-propagating cloud clusters (CCs). SCCs (CCs) had zonal sizes of several thousand (hundred) kilometers; typical propagation speed was 17 (10) m s−1. Smaller convective structures such as mesoscale cloud systems (MCs) of O(10 km) and cloud-scale elements (<10 km) were reproduced. A squall-type cluster with high cloud top (z > 16 km) of O(100 km) area was also reproduced. Planetary-scale equatorial waves (with wavelengths of 10 000 and 40 000 km) had a major influence on the eastward propagation of the simulated SCC; destabilization east of the SCC facilitated generation of new CCs at the eastern end of the SCC. Large-scale divergence fields associated with the waves enhanced the growth of deep clouds in the CCs. A case study of a typical SCC showed that the primary mechanism forcing westward propagation varies with the life stages of the CCs or with vertical profiles of zonal wind. Cold pools and synoptic-scale waves both affected CC organization. Cloud-scale elements systematically formed along the edges of cold pools to sustain simulated MCs. The location, movement, and duration of the MCs varied with the large-scale conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call