Abstract

The electrochemical performance and cycle life of lithium-ion batteries (LIBs) depend on the electrochemical, chemical, and mechanical behavior of electrodes and electrolytes. Despite extensive studies conducted previously, challenges exist to decouple these behaviors, capture the evolution of electro-chemo-mechanical behavior in realistic conditions, and correlate atomic-scale stress evolution to micro-scale bulk mechanical degradation. Here, we report multiscale operando techniques to investigate polydisperse battery electrodes by integrating volume-averaged quantitative synchrotron X-ray scattering with high-resolution transmission X-ray microscopy (TXM). The former provides us information spanning a wide spatial range, from Angstrom-level atomic structures to micrometer-level particle scales, while the latter provides time-resolved 2D images of the particles during cycling. The complementarity of the two operando techniques is demonstrated by an over-lithiation test of LiCoO2 electrodes, where particles crack and eventually pulverize. Additionally, the techniques are applied to study LiCoO2 cycling stability from 3.0 V to 4.5 V. Operando X-ray scattering result shows nanometer-scale features keep forming in LiCoO2 electrodes during cycling, resulting in an increased projected area observed by the TXM experiment. The formation of such features is inhibited by a polymer coating on the electrode, leading to vastly improved cycling stability. The polymer coating alleviates LiCoO2 surface deterioration, reduces side product generation, and inhibits LiCoO2 particles volume expansion during the cycling test. These operando multimodal X-ray techniques presented herein thus offer a novel, multiscale diagnostic modality for studying existing and emerging battery materials, aiding the development of next-generation LIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.