Abstract

Inspired by the adaptability observed in biological materials, self-assembly processes have attracted significant interest for their potential to yield novel materials with unique properties. However, experimental methods have often fallen short in capturing the molecular details of the assembly process. In this study, we employ a multiscale molecular dynamics simulation approach, complemented by NMR quantification, to investigate the mechanism of self-assembly in a redox-fueled bioinspired system. Contrary to conventional assumptions, we have uncovered a significant role played by the monomer precursor in the assembly process, with its presence varying with concentration and the extent of conversion of the monomer to the dimer. Experimental confirmation through NMR quantification underscores the concentration-dependent incorporation of monomers into the fibrous structures. Furthermore, our simulations also shed light on the diverse intermolecular interactions, including T-shaped and parallel π stacking, as well as hydrogen bonds, in stabilizing the aggregates. Overall, the open conformation of the dimer is preferred within these aggregates. However, inside the aggregates, the distribution of conformations shifts slightly to the closed conformation compared to on the surface. These findings contribute to the growing field of bioinspired materials science by providing valuable mechanistic and structural insights to guide the design and development of self-assembling materials with biomimetic functionalities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call