Abstract
ABSTRACTNeuronal models based on the Hodgkin–Huxley equation form a fundamental framework in the field of computational neuroscience. While the neuronal state is often modelled deterministically, experimental recordings show stochastic fluctuations, presumably driven by molecular noise from the underlying microphysical conditions. In turn, the firing of individual neurons gives rise to an electric field in extracellular space, also thought to affect the firing pattern of nearby neurons.We develop a multiscale model which combines a stochastic ion channel gating process taking place on the neuronal membrane, together with the propagation of an action potential along the neuronal structure. We also devise a numerical method relying on a split-step strategy which effectively couples these two processes and we experimentally test the feasibility of this approach. We finally also explain how the approach can be extended with Maxwell’s equations to allow the potential to be propagated in extracellular space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical and Computer Modelling of Dynamical Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.