Abstract
The case of molecular diffusion is investigated and a method is proposed to predict the effective diffusion properties of transversely isotropic composite materials. This paper is the second one of a set of two consecutive papers published in this volume. The general modelling strategy was devised in the first paper (Hervé-Luanco and Joannès, 2016) and applied to the biphasic case in this one. Closed-form analytical expressions are given to investigate fibre packing effects on the effective transverse diffusivity of any unidirectional composite. The specific case of insulated fibres embedded in a diffusive matrix is studied and a clear procedure is then described to determine the model parameters. It is worth noting that only a very simple cross-section image analysis of the unidirectional composite medium is required to provide the two morphological parameters needed to predict the overall diffusivity tensor. Finally, an application on a real microstructure is provided to demonstrate the efficiency of the suggested turnkey method. Very simple analytical calculations make possible parametric studies less expensive than numerical or experimental characterizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.