Abstract
We extend a renormalization group-based (RG) coarse-graining method for micromagnetic simulations to include properly scaled magnetostatic interactions. We apply the method in simulations of dynamic hysteresis loops at clinically relevant sweep rates and at 310 K of iron oxide nanoparticles (NPs) of the kind that have been used in preclinical studies of magnetic hyperthermia. The coarse-graining method, along with a time scaling involving sweep rate and Gilbert damping parameter, allow us to span length scales from the unit cell to NPs approximately 50 nm in diameter with reasonable simulation times. For both NPs and the nanorods composing them, we report effective uniaxial anisotropy strengths and saturation magnetizations, which differ from those of the bulk materials magnetite and maghemite of which they are made, on account of the combined non-trivial effects of temperature, inter-rod exchange, magnetostatic interactions and the degree of orientational order within the nanorod composites. The effective parameters allow treating the NPs as single macrospins, and we find for the test case of calculating loops for two aligned NPs that using the dipole approximation is sufficient for distances beyond 1.5 times the NP diameter. We also present a study on relating integration time step to micromagnetic cell size, finding that the optimal time step size scales approximately linearly with cell volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.