Abstract

Charged impurities influence functional properties of two-dimensional materials and a detailed theoretical understanding of charged defects is required to enable a rational design of defect-engineered nanomaterials for applications in ultrathin devices. To achieve this goal, we have developed multiscale approaches that combine atomistic first-principles theories, such as density-functional theory, with coarse-grained continuum models, such as effective mass models. This allows us to model large supercells which are required to accurately describe the slow decay of the screened defect potential and the defect-induced changes in the electronic properties of the two-dimensional host material. I will describe the results of our multiscale calculations for charged defects in doped graphene and in transition-metal dichalcogenide monolayers which have revealed novel mechanisms for controlling and tuning the electronic structure of two-dimensional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.