Abstract

A multiscale model was developed to simultaneously investigate the effect of covalent grafting and clustering of silica nanoparticles on the mechanical behaviors of polyimide nanocomposites. The interphase percolation model was utilized to account for the enhanced interfacial load transfer efficiency by covalent grafting and weaken formation of the interphase zone by agglomeration. Through homogenization analysis of the degree of agglomeration for each grafting ratio, we concluded that the highly grafted interface offsets the negative effects of nanoparticle clustering. The proposed multiscale framework was validated against existing experimental data, which implies that this approach can be used effectively for the design of grafted nanoparticle-reinforced polymer matrix composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.