Abstract

Zinc oxide nanoparticles (ZnONPs) synthesis was studied in multiscale modeling, proposing a reaction-diffusion system based on its three-stage reaction mechanism by the hydrothermal method: (1) dissociation of the precursor, (2) formation of the anion complex, and (3) obtaining the ZnO nanoparticle. Chemical compounds present in the reaction mechanism were evaluated under the Density Functional Theory (DFT) to find its reactivity through the B3LYP/6–311+G method. Reaction-diffusion model Computational simulation and numerical solution allow reproducing ZnONPs three-dimensional morphologies reported experimentally, such as rods, spheres, pseudo-spheres, octahedral, sheet-like, nut-like, and hollow spheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.