Abstract

This work explores microcombustion technologies enhanced by plasma-assisted combustion, focusing on a novel simulation model for a Y-shaped device with a non-premixed hydrogen-air mixture. The simulation integrates the ZDPlasKin toolbox to determine plasma-produced species concentrations to Particle-In-Cell with Monte Carlo Collision analysis for momentum and power density effects. The study details an FE-DBD plasma actuator operating under a sinusoidal voltage from 150 to 325 V peak-to-peak and a 162.5 V DC bias. At potentials below 250 V, no hydrogen dissociation occurs. The equivalence ratio fitting curve for radical species is incorporated into the plasma domain, ensuring local composition accuracy. Among the main radical species produced, H reaches a maximum mass fraction of 8% and OH reaches 1%. For an equivalence ratio of 0.5, the maximum temperature reached 2238 K due to kinetic and joule heating contributions. With plasma actuation with radicals in play, the temperature increased to 2832 K, and with complete plasma actuation, it further rose to 2918.45 K. Without plasma actuation, the temperature remained at 300 K, reflecting ambient conditions and no combustion phenomena. At lower equivalence ratios, temperatures in the plasma area consistently remained around 2900 K. With reduced thermal power, the flame region decreased, and at Φ = 0.1, the hot region was confined primarily to the plasma area, indicating a potential blow-off limit. The model aligns with experimental data and introduces relevant functionalities for modeling plasma interactions within microcombustors, providing a foundation for future validation and numerical models in plasma-assisted microcombustion applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.