Abstract

The deformation behavior of fully-lamellar polycrystalline g-TiAl + a2-Ti3Al alloys has been analyzed using a finite element method. A three-dimensional rate-dependent, finite-strain, crystalplasticity based materials constitutive model is used to represent the deformation behavior of the bulk material. The constitutive behavior of g-TiAl/g-TiAl lamellar interfaces and lamellae-colony boundaries, on the other hand, are modeled using a cohesive-zone formulation. The interface/boundary potentials used in this formulation are determined through the use of atomistic simulations of the interface/boundary decohesion. The constitutive relations for both the g-TiAl + a2-Ti3Al bulk material and the lamellar interfaces and colony boundaries are implemented in the commercial finite element program Abaqus/Standard, within which the material state is integrated using an Euler-backward implicit formulation. The results obtained show that plastic flow localizes into deformation bands even at an overall strain level of only 0.5% and that incompatibilities in plastic flow between the adjacent colonies can give rise to high levels of the hydrostatic stress and, in turn, to intercolony fracture. Furthermore, it is found that when lamellar interfaces are admitted into colonies, fracture is delayed and the materials fail in a more gradual manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.