Abstract

A method to relate the displacements of atoms within a representative volume element (RVE) of amorphous material to the deformation of the RVE is presented. The displacement relationship is expressed as a mapping matrix, T, which operates on the displacements of representative points in the RVE to return the atom displacements within it. While the mapping operation has the same mathematical form as an interpolation operation, the T matrix is not an interpolant. It is derived taking into account atom displacements in amorphous materials which cannot be simplified as a continuous, much less homogenous, field. It is shown that the computational domain of a material can be partitioned into nonintersecting sub-domains comprising representative cells — pseudo-amorphous cells (PAC) — and sub-domains of atoms for concurrent multiscale simulations of amorphous materials through the T matrix. Multiscale simulations of nanoindentation on a polymer substrate using the T matrix show good agreement with pure molecular mechanics simulations. When homogenization techniques commonly used for crystalline materials were employed for the same simulations, they gave much less accurate predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.