Abstract

This work presents the numerical analysis of natural fiber reinforced composites (from renewable sources), to evaluate the mechanical behavior of Bio-composites and elucidated the role of micro-mechanical analytical models (Rule of Mixtures and Halpin-Tsai models). Specifically, this study is carried out to perform the Multi-scale modeling and simulation of Biocomposite that constitute of sisal fiber reinforcement and Epoxidized Soybean-Oil (ESO) based matrix. In general, it is difficult to predict the effective properties of natural fiber reinforced composites due to its heterogeneous properties. The Representative Volume Element (RVE) model is capable to estimate the effective properties of Bio-composites. Therefore, RVE model is designed and analyzed based on micro-mechanics by taking the individual properties of fiber and matrix as an input. As a result, the effective properties of Bio-composite can be obtained. Subsequently, a 3-D model of Bio-composite laminated plate behavior is analyzed based on macro-mechanics by taking the effective properties of Bio-composite obtained from micro-mechanical analysis. The obtained effective properties of Bio-composite are validated with the theoretical (Rule of Mixtures) results. The micro-mechanical analysis is carried out using the Digimat (Multi-scale modeling and simulation tool) and macro-mechanical analysis is performed using Ansys software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.