Abstract

The paper puts forward a multiscale model of deformed polycrystals according to which the basis for self-consistent deformation of grains is rotational wave flows of planar structural transformations at their boundaries. Computer-aided engineering of grain boundaries reveals two types of rotational wave flows defined by the misorientation angle of adjacent grains. Grain boundary flows of the first type develop at low-angle boundaries and feature low curvature. These flows generate dislocations in the grain bulk and the Hall-Petch equation for them has the form σ=σ0+kd−1/2. Grain boundary flows of the second type develop at high-angle boundaries and feature high curvature. These flows generate curvature bands in near-boundary zones and inject them into the grain bulk, resulting in fragmentation of grains and breakdown of translation invariance. For such self-consistency of grains in a polycrystal, the Hall-Petch equation has the form σ=σ0+kd−1. Experimental data in support of the proposed multiscale model are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.