Abstract

AbstractDespite plenty of static and dynamic mechanical measurements and modeling for bulk polydimethylsiloxane (PDMS) specimens, a notable gap exists in comprehensively understanding the dynamic mechanics under large cycle, low strain conditions, especially for microscale samples. This study integrates tensile testing and nanoindentation techniques to compare dynamic mechanical response for bulk PDMS samples and μ‐pillars. The results from cyclic tensile testing, which involved up to 10,000 cycles at a strain range of 10%–20%, indicate a stabilization of energy dissipation rate after the initial 25 cycles. This attributes to stress relaxation and strain hardening, validating by rapid dual‐phase exponential decay in maximum stress, coupled with an incremental increase in elastic modulus. In comparison to tensile testing, μ‐pillars exhibited a 0.82% reduction in stiffness, stabilizing ~600th cycle. Concurrently, there was an approximately twofold increase in approaching distance during the initial 120 cycles, and an approximately fourfold increase in dissipated energy over the first 80 cycles, before reaching a plateau. This lagging hysteresis effect attributes to the distribution of the resultant force, including top tension, bottom compression, and base tilt. Overall, this study illuminates temporal mechanical deformations in PDMS under two application scenarios, enhancing our understanding of PDMS mechanical behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call