Abstract

The multiscale local polynomial transform, developped in this paper, combines the benefits from local polynomial smoothing with sparse multiscale decompositions. The contribution of the paper is twofold. First, it focusses on the bandwidths used throughout the transform. These bandwidths operate as user controlled scales in a multiscale analysis, which is explained to be of particular interest in the case of nonequispaced data. The paper presents both a likelihood based optimal bandwidth selection and a fast, heuristic approach. The second contribution of the paper is the combination of local polynomial smoothing with orthogonal prefilters, similar to Daubechies' wavelet filters, but defined on irregularly spaced covariate values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.