Abstract

We describe here a framework for a certain class of multiscale likelihood factorizations wherein, in analogy to a wavelet decomposition of an L2 function, a given likelihood function has an alternative representation as a product of conditional densities reflecting information in both the data and the parameter vector localized in position and scale. The framework is developed as a set of sufficient conditions for the existence of such factorizations, formulated in analogy to those underlying a standard multiresolution analysis for wavelets, and hence can be viewed as a multiresolution analysis for likelihoods. We then consider the use of these factorizations in the task of nonparametric, complexity penalized likelihood estimation. We study the risk properties of certain thresholding and partitioning estimators, and demonstrate their adaptivity and near-optimality, in a minimax sense over a broad range of function spaces, based on squared Hellinger distance as a loss function. In particular, our results provide an illustration of how properties of classical wavelet-based estimators can be obtained in a single, unified framework that includes models for continuous, count and categorical data types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.