Abstract
AbstractThe Polar Mesospheric Cloud (PMC) Turbulence experiment performed optical imaging and Rayleigh lidar PMC profiling during a 6‐day flight in July 2018. A mosaic of seven imagers provided sensitivity to spatial scales from ∼20 m to 100 km at a ∼2‐s cadence. Lidar backscatter measurements provided PMC brightness profiles and enabled definition of vertical displacements of larger‐scale gravity waves (GWs) and smaller‐scale instabilities of various types. These measurements captured an interval of strong, widespread Kelvin‐Helmholtz instabilities (KHI) occurring over northeastern Canada on July 12, 2018 during a period of significant GW activity. This paper addresses the evolution of the KHI field and the characteristics and roles of secondary instabilities within the KHI. Results include the imaging of secondary KHI in the middle atmosphere and multiple examples of KHI “tube and knot” (T&K) dynamics where two or more KH billows interact. Such dynamics have been identified clearly only once in the atmosphere previously. Results reveal that KHI T&K arise earlier and evolve more quickly than secondary instabilities of uniform KH billows. A companion paper by Fritts et al. (2022), https://doi.org/10.1029/2021JD035834 reveals that they also induce significantly larger energy dissipation rates than secondary instabilities of individual KH billows. The expected widespread occurrence of KHI T&K events may have important implications for enhanced turbulence and mixing influencing atmospheric structure and variability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.