Abstract
We develop a general framework to simultaneously exploit texture and shape characterization in multiscale image segmentation. By posing multiscale segmentation as a model selection problem, we invoke the powerful framework offered by minimum description length (MDL). This framework dictates that multiscale segmentation comprises multiscale texture characterization and multiscale shape coding. Analysis of current multiscale maximum a posteriori segmentation algorithms reveals that these algorithms implicitly use a shape coder with the aim to estimate the optimal MDL solution, but find only an approximate solution.© (2000) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.