Abstract

In this contribution we introduce a new family of wavelets named Circular Harmonic Wavelets (CHW), suited for multiscale feature-based representations, that constitute a basis for general steerable wavelets. The family is based on Circular Harmonic Functions (CHF) derived by the Fourier expansion of local Radial Tomographic Projections. A multiscale general feature analysis can be performed by linearly combining the outputs of CHW operators of different order. After a survey on the general properties of the CHFs, we investigate the relationship between CHF and the wavelet expansion, stating the basic admissibility and stability conditions with reference to the Hankel transform of the radial profiles and describing some fundamental mathematical properties. Finally some applications are illustrated through examples.© (1995) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.