Abstract
4D printing is an emerging field where 3D printing techniques are used to pattern stimuli-responsive materials to create morphing structures, with time serving as the fourth dimension. However, current materials utilized for 4D printing are typically soft, exhibiting an elastic modulus (E) range of 10-4 to 10MPa during shape change. This restricts the scalability, actuation stress, and load-bearing capabilities of the resulting structures. To overcome these limitations, multiscale heterogeneous polymer composites are introduced as a novel category of stiff, thermally responsive 4D printed materials. These inks exhibit an E that is four orders of magnitude greater than that of existing 4D printed materials and offer tunable electrical conductivities for simultaneous Joule heating actuation and self-sensing capabilities. Utilizing electrically controllable bilayers as building blocks, a flat geometry that morphs into a 3D self-standing lifting robot is designed and printed, setting new records for weight-normalized load lifted and actuation stress when compared to other 3D printed actuators. Furthermore, this ink palette is employed to create and print planar lattice structures that transform into various self-supporting complex 3D shapes. Finally these inks are integrated into a 4D printed electrically controlled multigait crawling robotic lattice structure that can carry 144 times its own weight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.