Abstract

Multiscale graphene/carbon fiber (G/CF) reinforcements were developed for copper matrix hybrid composites. The homegenious G/CF/Cu mixture powders were firstly prepared by the simple wet-mixing process, and then densified by hot-pressed sintering to obtain bulk composites. Microstructure, electrical conductivity and mechanical properties of such composites were investigated. In the sintered compacts, the hybrid G and CF reinforcements distributed randomly in Cu matrix. CF presented the various space orientations, and G nanosheets exhibited the interconnected network distribution. Hardness and tensile yield strength of composites were improved evidently by hybrid G/CF addition, which increased with G increasing. However, the ultimate tensile strength were firstly enhanced and then deteriorated by increasing G content. The lower electrical conductivity showed in the more G-added composite, but still reached more than 80.0% IACS. These performance change could be sought in the spatially geometrical distribution and characteristic of hybrid CF/G additions, and the relevant mechanisms were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.