Abstract
This paper presents the development of finite-volume multiscale methods for quadrilateral and triangular unstructured grids. Families of Darcy-flux approximations have been developed for consistent approximation of the general tensor pressure equation arising from Darcy's law together with mass conservation. The schemes are control-volume distributed (CVD) with flow variables and rock properties sharing the same control-volume location and are comprised of a multipoint flux family formulation (CVD-MPFA). The schemes are used to develop a CVD-MPFA based multiscale finite-volume (MSFV) formulation applicable to both structured and unstructured grids in two dimensions. The basis functions are a key component of the MSFV method, and are a set of local solutions, usually defined subject to Dirichlet boundary conditions. A generalization of the Cartesian grid Dirichlet basis functions described in [P. Jenny, S. H. Lee, and H. A. Tchelepi, J. Comput. Phys., 187 (2003), pp. 47--67] is presented here for unstructured grids. Whilst the transition from a Cartesian grid to an unstructured grid is largely successful, use of Dirichlet basis functions can still lead to pressure fields that exhibit spurious oscillations in areas of strong heterogeneity. New basis functions are proposed in an attempt to improve the pressure field solutions where Neumann boundary conditions are imposed almost everywhere, except corners which remain specified by Dirichlet values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.