Abstract

In this paper, we study a multiscale finite element method for solving a class of elliptic problems with finite number of well separated scales. The method is designed to efficiently capture the large scale behavior of the solution without resolving all small scale features. This is accomplished by constructing the multiscale finite element base functions that are adaptive to the local property of the differential operator. The construction of the base functions is fully decoupled from element to element; thus the method is perfectly parallel and is naturally adapted to massively parallel computers. We present the convergence analysis of the method along with the results of our numerical experiments. Some generalizations of the multiscale finite element method are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.