Abstract

Abstract Hyperspectral imagery can offer images with high spectral resolution and provide a unique ability to distinguish the subtle spectral signatures of different land covers. In this paper, we develop a new algorithm for hyperspectral image classification by using principal component analysis (PCA) and support vector machines (SVM). We use PCA to reduce the dimensionality of an HSI data cube, and then perform spatial convolution with three different filters on the PCA output cube. We feed all three convolved output cubes to SVM to classify every pixel. Finally, we perform fusion on the three output maps to determine the final classification map. We conduct experiments on three widely used hyperspectral image data cubes (ie indian pines, pavia university, and salinas). Our method can improve the classification accuracy significantly when compared to several existing methods. Our novel method is relatively fast in term of CPU computational time as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.