Abstract

Airborne electromechanical actuators (EMAs) play a key role in the flight control system, and their health condition has a considerable impact on the flight status and safety of aircraft. Considering the multi-scale feature of fault signals and the fault diagnosis reliability for EMAs under complex working conditions, a novel fault diagnosis method of multi-scale feature fusion convolutional neural network (MSFFCNN) is proposed. Leveraging the multiple different scales’ learning structure and attention mechanism-based feature fusion, the fault-related information can be effectively captured and learned, thereby improving the recognition ability and diagnostic performance of the network. The proposed method was evaluated by experiments and compared with the other three fault-diagnosis algorithms. The results show that the proposed MSFFCNN approach has a better diagnostic performance compared with the state-of-the-art fault diagnosis methods, which demonstrates the effectiveness and superiority of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.