Abstract

Shale gas is revolutionizing the U.S. energy and chemical commodity landscape and can ease the transition to a sustainable decarbonized economy. This work develops an equation-oriented (EO) multiscale modeling framework using the open-source IDAES-PSE platform that tractably incorporates microkinetic detail in process design via reduced-order kinetic (ROK) models. Using multiobjective optimization with embedded heat integration and life-cycle analysis, we simultaneously minimize the minimum selling price of liquid hydrocarbons (e.g., liquid fuels/additives from shale gas) and process emissions (via a CO2 tax). Optimization reduces greenhouse gas emissions per MJ of fuel produced by over 35% compared to the literature and achieves a carbon efficiency of 87%. The optimizer changes the recycling rate, temperatures, and pressures to mitigate the effect of ROK model-form uncertainty on product portfolio predictions. Moreover, we show that the optimal process design is insensitive to changing CO2 tax rates. Finally, the EO framework enables a fast sensitivity analysis of shale gas composition variability across 12 regions of the Eagle Ford basin. These results highlight the benefits of the open-source EO framework: fast, scalable, customized, and reproducible system analysis and optimization for sustainable energy technologies beyond shale utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.