Abstract

This study explores a novel application of multiscale entropy (MSE) analysis for characterizing different patterns of spontaneous electromyogram (EMG) signals including sporadic, tonic and repetitive spontaneous motor unit discharges, and normal surface EMG baseline. Two algorithms for MSE analysis, namely, the standard MSE and the intrinsic mode entropy (IMEn) (based on the recently developed multivariate empirical mode decomposition method), were applied to different patterns of spontaneous EMG. Significant differences were observed in multiple scales of the standard MSE and IMEn analyses (<;i>p<;/i> <; 0.001) for any two of the spontaneous EMG patterns, while such significance may not be observed from the single-scale entropy analysis. Compared to the standard MSE, the IMEn analysis facilitates usage of a relatively low scale number to discern entropy difference among various patterns of spontaneous EMG signals. The findings from this study contribute to our understanding of the nonlinear dynamic properties of different spontaneous EMG patterns, which may be related to spinal motoneuron or motor unit health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.