Abstract

Computational complexity reduction is at the basis of a new formulation of many-body quantum states according to tensor network ansatz, originally framed in one-dimensional lattices. In order to include long-range entanglement characterizing phase transitions, the multiscale entanglement renormalization ansatz (MERA) defines a sequence of coarse-grained lattices, obtained by targeting the map of a scale-invariant system into an identical coarse-grained one. The quantum circuit associated with this hierarchical structure includes the definition of causal relations and unitary extensions, leading to the definition of ground subspaces as stabilizer codes. The emerging error correcting codes are referred to logical indices located at the highest hierarchical level and to physical indices yielded by redundancy, framed in the AdS-CFT correspondence as holographic quantum codes with bulk and boundary indices, respectively. In a use-case scenario based on errors consisting of spin erasure, the correction is implemented as the reconstruction of a bulk local operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.