Abstract
In the multi-scale view of the star formation process the material flows from large molecular clouds down to clumps and cores. In this paradigm it is still unclear if it is gravity or turbulence that drives the observed supersonic non-thermal motions during the collapse, in particular in high-mass regions, and at which scales gravity becomes eventually dominant over the turbulence of the interstellar medium. To investigate this problem we have combined the dynamics of a sample of 70 μm-quiet clumps, selected to cover a wide range of masses and surface densities, with the dynamics of the parent filaments in which they are embedded. We observe a continuous interplay between turbulence and gravity, where the former creates structures at all scales and the latter takes the lead when a critical value of the surface density is reached, Σth = 0.1 g cm−2. In the densest filaments this transition can occur at the parsec, or even larger scales, leading to a global collapse of the whole region and most likely to the formation of the massive objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.