Abstract

In this article, a fault diagnosis scheme based on multiscale diversity entropy (MDE) and extreme learning machine (ELM) is presented. First, a novel entropy method called diversity entropy (DE) is proposed to quantify the dynamical complexity. DE utilizes the distribution of cosine similarity between adjacent orbits to track the inside pattern change, resulting in better performance in complexity estimation. Then, the proposed DE is extended to multiscale analysis called MDE for a comprehensive feature description by combining with the coarse gaining process. Third, the obtained features using MDE are fed into the ELM classifier for pattern identification of rotating machinery. The effectiveness of the proposed MDE method is verified using simulated signals and two experimental signals collected from the bearing test and the dual-rotator of the aeroengine test. The analysis results show that our proposed method has the highest classification accuracy compared with three existing approaches: sample entropy, fuzzy entropy, and permutation entropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.