Abstract

We develop a discretization and computational procedures for approximation of the action of Fourier integral operators the canonical relations of which are graphs. Such operators appear, for instance, in the formulation of imaging and inverse scattering of seismic reflection data. Our discretization and algorithms are based on a multiscale low-rank expansion of the action of Fourier integral operators using the dyadic parabolic decomposition of phase space and on explicit constructions of low-rank separated representations using prolate spheroidal wave functions, which directly reflect the geometry of such operators. The discretization and computational procedures connect to the discrete almost symmetric wave packet transform. Numerical wave propagation and imaging examples illustrate our computational procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.