Abstract

AbstractThe development of advanced energy conversion systems such as fuel cells and electrolyzers with desirable efficiency and durability is of great significance in order to power society in a sustainable way, which highly depends on the fabrication of electrocatalysts with desirable electrochemical performance. Multi‐scale design of electrocatalysts from the atomic scale to device‐scale is crucial to achieve optimal overall electrochemical performance in terms of activity, selectivity, and durability. Benefitting from their highly diverse and tunable structures and compositions, metal–organic frameworks (MOFs) are promising platforms to design and synthesize electrocatalysts at multiple scales for energy electrocatalysis. Herein, the fundamental principles and recent progress in multi‐scale design of MOF‐derived materials from the aspects of active sites, interfaces, pore structures, and morphologies are summarized. Moreover, precise control of these variables, to meet the requirements of specific energy‐related reactions including oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, CO2 reduction reaction (CO2RR), and N2 reduction reaction is critically discussed. Furthermore, challenges and future research directions in multi‐scale design and fabrication of MOF‐derived electrocatalysts for real‐world energy conversion applications are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.