Abstract
Plasticization of polymers largely contributed to their worldwide utilization, especially for automotive crashworthiness, by making them a more ductile material. For such applications, a clear understanding of the mechanical properties evolution over a large range of strain rate and temperature is needed. In this study, we investigate a plasticized poly(vinyl chloride) manufactured through a multilayered process for the automotive industry. Analysis of the microstructure before and after mechanical testing, at different temperature and strain rate, highlighted the presence of sodium aluminosilicate within material microstructure. After thermal degradation analysis, these particles seem to be the only one to remain at high temperature. Moreover, it is important to mention that for the possible applications of this material, the temperature range is around the glass transition region leading. Thus, careful attention should be focused on the evolution of the material properties and on the way to model them. Numerical prediction of the storage modulus and yield stress using homemade models show a good agreement with the experimental data. More, these models will make reliable the use of these materials over a wide range of temperatures and strain rates that are difficult to obtain by experience, such as intermediate strain rates between quasi-static and dynamic loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.