Abstract

A new method combining the characteristics of macro-scale texture repeat patterns and micro-scale interwoven yarns of fabric images was proposed for yarn-dyed fabric density detection. The method was formulated in a research framework of multi-scale image processing and analysis. Firstly, a structure–texture decomposition approach was used to extract texture information and woven pattern details from the macro-scale fabric image. Secondly, a texture unit detection model was proposed to extract the texture units and to detect the yarn skewness in these texture units. Thirdly, a simple yet effective image registration method and a lightness gradient projection method were adopted to analyze the micro-scale fabric image and obtain the yarn locations in a texture unit. Finally, the average fabric density was calculated by coupling the near-regular features of texture units and yarn locations. The experiments showed that the proposed method was effective in detecting hundreds of yarns in the fabric samples and the computation time was very reasonable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.