Abstract
Prognostics and Health Management (PHM) is the core task in modern industries to provide the reliability and availability of mechanical systems. In recent years, the degradation behaviors have been extensively employed to estimate the remaining useful life in PMH technologies. In this research, a novel data-driven framework based on the multi-scale network structure, called MCA-BGRU, is proposed to provide the remaining useful life prediction, which combines multi-scale convolution neural network (CNN), bidirectional gated recurrent unit (BGRU), multi-head self-attention (MHSA) mechanism, and fully-connected layers. In this proposed structure, multi-scale CNN blocks and the MHSA mechanism are constructed to capture high-level representations from the multivariate input data automatically. Then, a BGRU layer is leveraged to learn various temporal tendencies between extracted features. Additionally, particle swarm optimization is adopted to simultaneously tune the hyperparameters of this framework. The superiority of the MCA-BGRU is validated by the well-known C-MAPSS dataset of NASA. The experimental results revealed that the presented approach achieves an improvement of 0.32% and 5.6% in terms of RMSE and Score values compared with the various existing studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.