Abstract

Bonded and co-cured composites are popular alternatives to structures joined with mechanical fasteners in aircraft but the complex and coupled damage mechanisms in the co-cured/bonded region are poorly understood, thus making the evaluation of their strength and durability difficult with current modelling strategies. This study explores the potential of interleaf inclusion in failure-prone, critical regions of co-cured composite specimens in improving the joint strength and interface fracture toughness and strives to advance the understanding of damage initiation in the co-cured region using an atomistic model. A two-pronged approach is pursued here with bench-scale experimental testing and molecular modelling in this study. Experiments are performed for mode I fracture toughness with double cantilever beam (DCB) on composite laminates with an epoxy interleaf layer. Two epoxy resins and three methods for interleaf inclusion are explored in this study; we supplement the results from DCB testing with insights from confocal microscopy on the crack tip and the interleaf layer pre- and post-testing. Molecular dynamic (MD) simulations capture the cohesive interactions at the threephase interface containing the carbon fiber, the prepreg epoxy, and the interleaf epoxy. Results highlight that an interleaf layer made from partially-cured and filmed epoxy, further consolidated in the composite lay-up is the most effective way to suppress void formation, improve dispersion, and maximize cohesive interactions at the interface of co-cured composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call