Abstract
Integrated water evaporation and thermoelectric power generation system (IWETPGS) has been recognized to be a promising strategy for the utilization of solar energy. Herein, we developed a new type of IWETPGS with multi-scale pyramidal photothermal structures. They featured three-dimensional pyramidal structures with microscale gradient porous copper foams, as well as micro/nanoscale CuS nanowires and reduced graphene oxide (rGO) composite materials. They combined the merits of efficient multiple refraction and absorption of light, broad-spectrum absorption capabilities of rGO and high near-infrared extinction coefficient of CuS, as well as fast water transportation by gradient porous matrix. These photothermal structures induced a photothermal conversion efficiency of 97.6%. An IWETPGS integrating these structures with a thermoelectric generator (TEG) and microchannel heat sink was developed, and outstanding evaporation and output power performance were obtained simultaneously with an evaporation rate of 2.29 kg/m2h and maximum output power of 1.32 W/m2 under 1 sun illumination. Outdoor tests showed that an average daily water production of 12.1 kg/m2 and a maximum power generation of 5.55 W/m2 was obtained. This work provides a high-performance multi-scale CuS-rGO pyramidal photothermal structure to achieve freshwater and thermoelectric power co-generation, which provides potential opportunities for freshwater and electricity supply in remote areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.