Abstract
Physiological signals often show complex fluctuation (CF) under the dual influence of temporal and spatial scales, and CF can be used to assess the health of physiologic systems in the human body. This study applied multiscale cross-approximate entropy (MC-ApEn) to quantify the complex fluctuation between R-R intervals series and photoplethysmography amplitude series. All subjects were then divided into the following two groups: healthy upper middle-aged subjects (Group 1, age range: 41–80 years, n = 27) and upper middle-aged subjects with type 2 diabetes (Group 2, age range: 41–80 years, n = 24). There are significant differences of heart rate variability, LHR, between Groups 1 and 2 (1.94 ± 1.21 versus 1.32 ± 1.00, P = 0.031). Results demonstrated differences in sum of large scale MC-ApEn (MC-ApEnLS) (5.32 ± 0.50 versus 4.74 ± 0.78, P = 0.003). This parameter has a good agreement with pulse-pulse interval and pulse amplitude ratio (PAR), a simplified assessment for baroreflex activity. In conclusion, this study employed the MC-ApEn method, integrating multiple temporal and spatial scales, to quantify the complex interaction between the two physical signals. The MC-ApEnLS parameter could accurately reflect disease process in diabetics and might be another way for assessing the autonomic nerve function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Mathematical Methods in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.