Abstract

Recently, multiscale spatial features have been widely utilized to improve the hyperspectral image (HSI) classification performance. However, fixed-size neighborhood involving the contextual information probably leads to misclassifications, especially for the boundary pixels. Additionally, it has been demonstrated that deep neural network (DNN) is practical to extract representative features for the classification tasks. Nevertheless, under the condition of high dimensionality versus small sample sizes, DNN tends to be over-fitting and it is generally time-consuming due to the deep-level feature learning process. To alleviate the aforementioned issues, we propose a multiscale context-aware ensemble deep kernel extreme learning machine (MSC-EDKELM) for efficient HSI classification. First, the scene of the HSI data set is over-segmented in multiscale via using the adaptive superpixel segmentation technique. Second, superpixel pattern (SP) and attentional neighboring superpixel pattern (ANSP) are generated by leveraging the superpixel maps, which can automatically comprise local and global contextual information, respectively. Afterward, an ensemble deep kernel extreme learning machine (EDKELM) is presented to investigate the deep-level characteristics in the SP and ANSP. Finally, the category of each pixel is accurately determined by the decision fusion and weighted output layer fusion strategy. Experimental results on four real-world HSI data sets demonstrate that the proposed frameworks outperform some classic and state-of-the-art methods with high computational efficiency, which can be employed to serve real-time applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.