Abstract

The paper introduces a general procedure for computational analysis of a wide class of multiscale problems in mechanics using a finite calculus (FIC) formulation. The FIC approach is based in expressing the governing equations in mechanics accepting that the domain where the standard balance laws are established has a finite size. This introduces naturally additional terms into the classical equations of infinitesimal theory in mechanics which are useful for the numerical solution of problems involving different scales in the physical parameters. The discrete nodal values obtained with the FIC formulation and the finite element method (FEM) can be effectively used as the starting point for obtaining a more refined solution in zones where high gradients of the relevant variables occur using hierarchical or enriched FEM. Typical multiscale problems in mechanics which can be solved with the FIC method include convection–diffusion-reaction problems with high localized gradients, incompressible problems in solid and fluid mechanics, localization problems such as prediction of shear bands in solids and shock waves in compressible fluids, turbulence, etc. The paper presents an introduction of the treatment of multiscale problems using the FIC approach in conjunction with the FEM. Examples of application of the FIC/FEM formulation to the solution of simple multiscale convection–diffusion problems are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call