Abstract

In this work, a multiscale cohesive zone model (MCZM) is developed to simulate the high-speed penetration induced dynamic fracture process such as fragmentation in crystalline solids. This model describes bulk material as a local quasi-continuum medium which follows the Cauchy–Born rule while cohesive zone element is governed by an interface depletion potential, such that the cohesive zone constitutive descriptions are genetically consistent with that of bulk element. This multiscale method proved to be effective in describing material inhomogeneities and it is constructed and implemented in a cohesive finite element Galerkin weak formulation. Numerical simulations of high-speed penetration with different shape of penetrators, i.e., square, circle and parabola nose penetrators are performed. Results show that the proposed MCZM can successfully capture spall fracture, the penetration process and different characteristics of fragmentation under different shape of penetrators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.