Abstract
An adaptive control based on a new Multiscale Chebyshev Neural Network (MSCNN) identification is proposed for the backlash-like hysteresis nonlinearity system in this paper. Firstly, a MSCNN is introduced to approximate the backlash-like nonlinearity of the system, and then, the Lyapunov theorem assures the identification approach is effective. Afterward, to simplify the control design, tracking error is transformed into a scalar error with Laplace transformation. Therefore, an adaptive control strategy based on the transformed scalar error is proposed, and all the signals of the closed-loop system are uniformly ultimately bounded (UUB). Finally, simulation results have demonstrated the performance of the proposed control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.