Abstract
This paper studies the autoregressive integrated moving average (ARIMA) state space model combined with Kalman smoothing to impute missing values in a univariate time series before detecting change points. We estimate a scale-dependent time-average variance constant that depends on the length of the data section and is robust to mean shifts under serial dependence. The consistency of the proposed estimator is shown under the assumption allowing heavy tailedness. Integrating the proposed estimator with the moving sum and wild binary segmentation procedures to determine the number and locations of change points is discussed. Furthermore, the performance of the proposed methods is evaluated through extensive simulation studies and applied to the Beijing multi-site air quality dataset to impute missing values and detect mean changes in the data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.