Abstract

An electrocardiogram (ECG) signal is an important diagnostic tool for cardiologists to detect the abnormality. In continuous monitoring, an ambulatory huge amount of ECG data is involved. This leads to high storage requirements and transmission costs. Hence, to reduce the storage and transmission cost, there is a requirement for an efficient compression or coding technique. One of the most promising compression techniques is Compressive Sensing (CS) which makes efficient compression of signals. By this methodology, a signal can easily be reconstructed if it has a sparse representation. This paper presents the Block Sparse Bayesian Learning (BSBL)-based multiscale compressed sensing (MCS) method for the compression of ECG signals. The main focus of the proposed technique is to achieve a reconstructed signal with less error and more energy efficiency. The ECG signal is sparsely represented by wavelet transform. MIT-BIH Arrhythmia database is used for testing purposes. The Huffman technique is used for encoding and decoding. The signal recovery is appropriate up to 75% of compression. The quality of the signal is ascertained using the standard performance measures such as signal-to-noise ratio (SNR) and Percent root mean square difference (PRD). The quality of the reconstructed ECG signal is also validated through the visual method. This method is most suitable for telemedicine applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.